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The linear stability of compressible plane Couette flow is investigated. The appropriate 
basic velocity and temperature distributions are perturbed by a small-amplitude 
normal-mode disturbance. The full small-amplitude disturbance equations are solved 
numerically at finite Reynolds numbers, and the inviscid limit of these equations is then 
investigated in some detail. It is found that instabilities can occur, although the 
corresponding growth rates are often quite small; the stability characteristics of the 
flow are quite different from unbounded flows. The effects of viscosity are also 
calculated, asymptotically, and shown to have a stabilizing role in all the cases 
investigated. Exceptional regimes to the problem occur when the wave speed of the 
disturbances approaches the velocity of either of the walls, and these regimes are also 
analysed in some detail. Finally, the effect of imposing radiation-type boundary 
conditions on the upper (moving) wall (in place of impermeability) is investigated, and 
shown to yield results common to both bounded and unbounded flows. 

1. Introduction 
Incompressible plane Couette flow possesses, perhaps, the simplest exact solution of 

the Navier-Stokes equations (see the remarks of Stewartson 1981), and (probably as 
a consequence) the study of the stability of this flow has been the subject of 
considerable attention over the years. Numerical studies of the linear stability problem 
have been carried out by Grohne (1954), Gallagher & Mercer (1962, 1964), Deardorff 
(1963), Davey (1973), and Gallagher (1974); however, none of these studies found 
evidence of instability. A number of analytic studies have also been carried out on this 
problem. Wasow (1953) showed that the flow is stable at all streamwise wavenumbers 
(a) if the Reynolds number (Re) is sufficiently large. The stability of the flow at low 
Reynolds number was demonstrated by Synge (1938). Dikii (1964) proved that all 
modes with wave speeds equal to the average of the wall velocities were stable and 
indeed that the imaginary component of the wave speed Im{c} < -a/Re. The first 
general proof of stability appears to be due to Romanov (1973) who showed that all 
normal modes of the linear problem are damped for a 2 0,  Re > 0. Exact solutions of 
the Orr-Sommerfeld equations have been obtained by Reid (1979). 

Another issue that has been studied is the question of a continuous spectrum. Case 
(1960, 1961) showed that the time-dependent inviscid problem has a continuous 
spectrum which decays in time as l / t ,  this spectrum arising as a direct consequence of 
the singularity of the inviscid equations at the critical layer, whilst Shivamoggi (1982) 
presented an example of a continuous spectrum which decayed exponentially in time. 
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A detailed analysis of modes for the large-Reynolds-number limit for general mean 
flows is given by Morawetz (1952), which has implications for plane Couette flow. She 
classified the modes into three sets. In the first set are eigenvalues which approach the 
inviscid eigenvalues in the limit of infinite Reynolds number. Since there are no discrete 
inviscid eigenvalues in the case of plane Couette flow, this first set is empty. In the 
second set, there is an infinity of eigensolutions unrelated to the inviscid problem, 
satisfying 

where A is a constant, and c, is a root of 

Ic-c,I < d(aRe)-$, (1 * 1) 

nn: 
2(a Re): ’ 

Im 11 [iUo(y) - en]; dy = ~ 

where n is any integer, Uo(y)  is the velocity profile, a is the wavenumber, and the flow 
extends from y = y ,  to y = ya. These modes are always stable (if Re is sufficiently 
large). In the third class are eigensolutions of the viscous problem that, as aRe + co, 
approach a finite V-shaped strip in c-space defined by one branch of 

Re 1:; [i( U,(y) - c)]; dy = 0, 

Re 1; [i( U,( y )  - c)]; dy = 0, and on branch of 

where U,,(y,.) = Re{c); these modes are either neutral or stable. Some generalizations 
for compressible flow can be found in Morawetz (1954). 

However, there is a dichotomy between the theoretical and computational results 
described above and experimental results at large Reynolds numbers, in which 
instabilities are certainly observed (Taylor 1936; Reichardt 1956; Robertson 1959). A 
number of attempts have been made to explain this through the inclusion of nonlinear 
terms. Investigations of this type include the work of Watson (1960), Eckhaus (1965), 
Hains (1967), Reynolds & Potter (1967), Ellingsen, Gjevik & Palm (1970), and Lessen 
& Cheifetz (1 975). These studies used several techniques involving various degrees of 
mathematical rigour, and led to a number of conclusions (some partly contradictory), 
although on balance the evidence was that finite-amplitude effects could, indeed, 
destabilize the flow. Additionally, Romanov (1973) considered the nonlinear initial- 
value problem and showed that there is a unique solution which is asymptotically 
stable if the norm of the initial disturbances in Sobolev space is sufficiently small. 

The linear stability of compressible flows is considerably less well understood than 
corresponding incompressible flows. Most of the work (which has for the most part 
been based on the parallel mean flow assumption) has been with regard to boundary- 
layer flows (e.g Lees & Lin 1946; Mack 1963, 1965a, b, 1969, 1984, 1987, 1990; 
Reshotko 1962, 1976) and more recently to jets with shear layers (e.g. Tam & Hu 
1989a, b ;  Greenough et al. 1988; Papageorgiou 1990; Jackson & Grosch 1989; Mack 
1990). Other, more recent, related work, with particular emphasis on the hypersonic 
limit of the stability problem, is that of Cowley & Hall (1990), Smith & Brown (1990), 
Goldstein & Wundrow (1990), Balsa & Goldstein (1990), and Blackaby, Cowley & Hall 
(1993). Interestingly, a general feature of hypersonic flow stability is a trend towards 
less unstable flows. Nonlinear critical-layer analysis of compressible flows has also 
been considered by Gajjar & Cole (1989) and Gajjar (1990). 
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The first (of a number) of distinguishing features of the stability of compressible 
flows was found by Lees & Lin (1946). This relates to the replacement of the (classical) 
inflexion-point condition in the streamwise velocity profile (for the existence of neutral 
inviscid modes), by the generalized-inflexion-point (GIP) condition which involves the 
mean density distribution also. This condition relates to the existence of neutral 
‘inviscid’ modes (i.e. modes of wavelength comparable to the characteristic scales of 
the mean flow, for example the displacement thickness in the case of boundary-layer 
flows, or lateral extent in the case of confined flows). 

In addition to these ‘subsonic’ modes associated with the GIP, there may also exist 
supersonic neutral modes (Mack 1963, 1965a, b. 1969, 1984, 1987, 1990). and subsonic 
modes not associated with a GIP can become unstable in the presence of a relative 
supersonic pocket between the wall and the relative sonic line (where the perturbation 
wave is propagating sonically relative to the mean flow). However, to date, a simple 
mechanism that explains why and precisely under what conditions these types of mode 
exist has yet to be propounded. Some general remarks concerning stability at large 
Reynolds numbers have been made, however, by Lin (1955). In the case of stable 
disturbances, with finite damping, it was shown that a finite viscous region in the 
interior of the fluid exists for arbitrarily large Reynolds number. In the case of unstable 
disturbances, with finite amplification, there is no inner viscous region if the Reynolds 
number of the mean flow is large enough. In the case of neutral disturbances (for 
constant Prandtl number) it was rigorously shown that if a viscous region does exist, 
its width shrinks to zero with an increase in Reynolds number. Studies relating to 
the stability of other classes of compressible flow include the work of Tam & Hu 
(1989a, b), Greenough et al. (1989), Zhuang, Kubota & Dimotakis (1990) (confined 
two-dimensional supersonic mixing layers), Macaraeg & Streett (1 989), and Mack 
(1 990) (compressible mixing layers). 

The object of this study is to analyse some of the characteristics of compressible 
plane Couette flow. Although analytic expressions for the mean streamwise velocity 
U&y) and temperature T,(y) are not available for general viscosity laws, T,(y) may be 
expressed as a second-order polynomial in U,(y), and hence it is relatively 
straightforward to generate mean flow profiles, under different conditions. Thus this 
profile represents a rare opportunity to analyse an exact solution of the full equations 
of motion and energy without the need for other approximations (notably the parallel- 
flow approximation). Some work has previously been carried out to investigate the 
compressible stability of plane Couette flow. Glatzel (1988) considered inviscid 
stability of this problem, and then Glatzel(l989) went on to incorporate the effects of 
viscosity. However, both these works were for the special case of constant viscosity, 
density and pressure (implying constant temperature also), which led to a fourth- 
order system (rather than a sixth-order system). Girard (1988) considered the same 
problem, and also assumed constant viscosity (although he did allow for variations in 
density and temperature). In this paper, we choose to consider the stability of the mean 
flow profile described above, which is a correct and proper solution of the full 
compressible Navier-Stokes equations. We show that the details of the mean flow 
profile have a profound effect on the stability of the flow. 

The layout of the paper is as follows. In $2 we formulate the problem, stating our 
fundamental assumptions and equations of motion. In $ 3  we derive the equations of 
motion for the basic flow, in which the problem is reduced to that of a straightforward, 
although nonlinear, first-order system that may be solved by means of standard 
numerical means. In 94 we derive the (full) small-amplitude disturbance equations, 
neglecting only terms in perturbation amplitude squared, and we describe a numerical 
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scheme to treat this system, together with a number of numerical results. In 95 we 
consider the inviscid limit of these equations; we show how the so-called 'generalized 
inflexion point' is relevant in this context, and under what circumstances we can expect 
such a point to occur with our basic profile. 

Numerical results for the inviscid problem are presented in $6, and, most 
importantly, it is shown that unstable modes are possible, although according to 
inviscid theory there are many regions where many modes are neutrally stable. These 
neutral modes are investigated further in $7, in which the effects of viscosity are 
included, and shown to always have a stabilizing role for high Reynolds numbers. 
However, this study also raises important questions regarding the applicability of our 
results, in particular in regions of changeover from the neutral to non-neutral state. 
This region is investigated in some detail in $8. Because of the apparent discrepancy in 
results between bounded and unbounded stability analyses, in $9 we consider a change 
in boundary conditions on the upper (moving) wall, from one of impermeability to one 
of radiation. Finally, in !j 10 we present some conclusions. 

2. Formulation 
We assume that we have a compressible Newtonian perfect fluid between two infinite 

parallel planes defined by y* = 0 and y* = h. The x*-axis is taken to lie in the plane 
of the lower wall. We take the fluid to have density p*, viscosity y*, and second 
coefficient of viscosity 6" (which may be taken to be zero for a monatomic gas). The 
upper wall has velocity U ,  (a subscript co refers to unperturbed conditions on the 
upper wall), taken parallel to the plane of the wall, while the lower wall is at rest. 
Although the basic flow will be taken to be one-dimensional, later we shall consider 
two-dimensional perturbations of this flow. The velocity components are taken to be 
u* = (u*, v*) in the x*- and y*-directions respectively, and the pressure and temperature 
are written as p* and T* respectively. We non-dimensionalize velocities with respect to 
U,, lengthscales with respect to h,  density with respect to pz, viscosity with respect to 
pz, temperature with respect to TZ and pressure with respect to p: R*T:, where the 
gas constant R* = C, - C,, and C ,  and C, are the specific heats at constant pressure 
and volume respectively; non-dimensional quantities are denoted using the same 
notation as corresponding dimensional quantities, except without the superscript 
asterisk. 

The continuity equation may then be written 

ap a a 
-+-@u)+--(pv) = 0. 
at  ax aY 

Here, and throughout the paper, we assume that the appropriate dimensional timescale 
is O(h/U,) .  

The momentum equations are written 

Here the Reynolds number Re is defined by 
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the Mach number M ,  by 

and the ratio of specific heats by y. 
The non-dimensional form of the energy equation used is 

2p(y- Mi [ (21 + (g)' +- I (- au +-)' a0 + - A (- a u  +5)2]. a0 (2.6) 
+ Re 2 ay ax 2p ax 

Here B is the Prandtl number = p*Cp/K*,  (2.7) 

p = pT. (2.8) 

where K* is the coefficient of heat conductivity. The equation of state is simply 

We assume that viscosity depends solely on temperature, and in particular we assume 
Sutherland's law 

where C is a constant. Finally, A = <-2/3p and the Stokes assumption < = 0 is 
assumed throughout the paper. 

In the following section we consider the basic flow which we expect to depend on y 
only. 

3. Compressible Couette flow 
We seek a solution of (2.1)-(2.6) which is dependent on y only, together with a 

constant mean pressure. By continuity we must have o = 0. We then seek a solution of 
the form 

u = U ~ ( Y ) ,  T =  T,(Y), P = Pn(Y).  (3.1) 
We then have 0 . 0  UoJy = 0, ( 3 4  

p] +(y-  I ) M ~ p o ( U o y ) 2  = 0, 
Y 

(3.3) 

(3.4) 

It follows immediately from (3.2) that the shear stress 7 is a constant through the 

subject to uo(0) = 0, Un(1) = 

T,@) = TI,, T, = 1. j 

profile, i.e. 
7 = pn U,,, = constant. (3.5) 

The energy equation may then be written as 

It is easy to show, using (3.6) that the recovery temperature (i.e. the wall temperature 
with adiabatic conditions) is 

T, = 1 +gy-  1) rTMi, (3.7) 
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FIGURE 1. Basic flow, adiabatic case, M ,  = 2, 5 .  (a)  U,(y), (b) T,(y). 

r = TWIT,. and we define the recovery factor 

Equation (3.6) may be integrated and written in the form 
(3.8) 

T , = T ,  r+(1-r>Uo- 1 - -  u ; .  (3.9) { ( 2 I 
Equations (3.5) and (3.9), together with an appropriate viscosity law (we used (2.9)) 
and boundary conditions (3.4), then completely determine the problem; 7 is unknown 
a priori and must therefore be determined as part of an iterative process. The mean 
pressure profile is constant. The process was then to guess a value of 7, and then to use 
a fourth-order Runge-Kutta scheme to generate the solution (using (3.5)) from y = 0 
to y = 1, where the condition on Uo(y)  will not be satisfied. This condition, in 
conjunction with a Newton iteration procedure, was then used to update the value of T .  

This scheme was then repeated until convergence of 7 had been achieved. 
Results €or the basic flow are shown in figure 1 (a)  (U,,(y)) and figure 1 (b) (&(y)),  at 

the two Mach numbers to be studied throughout this paper ( M ,  = 2 and 5 )  for an 
adiabatic lower wall. We set y = 1.4, cr = 0.72, together with the Sutherland constant 
C = 0.5. These results show that there is a (mild) deviation away from the uniform 
shear solution for U,(y), whilst there is a (dramatic) deviation of T,(y) from the 
uniform state of incompressible theory. 

4. The small-amplitude disturbance equations 

section) together with a small-amplitude perturbation. More specifically, we write 
Here we take the solution to be that of Couette flow (as discussed in the previous 

(4.1) I u = Uo(y)+SH(y)E+O(S2), v = Solv"(y)E+#(S')), 

p = 1 + @(y) E+ #(a2), P = f o ( Y > + m ) E + O ( S 2 ) ,  
P = P o ( Y ) + W Y ) E + W 2 ) ,  5 = C o ( Y ) + ~ t ( y ) E + O ( a  
T = T,( y )  + SF(y) E + O(S2), 
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where E = exp [ia(x - ct)], (4 - 2) 
and S is the (small) amplitude of the perturbation. If we take terms O(6) in (2.1)-(2.3), 
(2.6) we obtain the following full, small-disturbance equations : 

(4.3) -icfi + ip, G+iU,fi + ijpo, +p, 15, = 0, 

ia 
YM, 

po[-iacu"+iaUoG+ai;U,,] +7jj 

1 
Re = -{-2poa2ii+A0[ --2U"+iaij,]+poy[U"y+i~~+pO[E?yy+i~ijy]+~y- Uo,+,kUo,g), 

(4.4) 

The perturbation equation of state is then 
p" = T, f i+ f /T , .  (4.7) 

No-slip and impermeability conditions are applied to the velocity perturbations at both 
walls, namely 

$0) = G( 1)  = ij(0) = C( 1) = 0. (4.8) 
The temperature boundary conditions are f(1) = 0, while on the lower wall, 

T(0) = 0 
for a heated/cooled surface and 

(4.9) 

- = 0  on y = O  (4.10) 

for an insulated wall. 
We now present results based on the full set of viscous compressible linearized 

equations, i.e. (4.3H4.7) above. 
The stability results are obtained from a spectral temporal linear stability code 

written by Herbert (1990). The code assumes a global representation of all variables in 
appropriate basis functions which can vary from variable to variable. The basis 
functions for the velocity components satisfy the imposed boundary conditions. 
Velocity perturbations are set to zero at y = 0 and y = 1 .  Thus, the velocity basis 
functions are linear combinations of Chebyshev polynomials. In terms of the 
Chebyshev polynomials Tn(p), these basis functions are defined as 

(4.11) 

a? 
aY 

UJY) = T L + 2 ( . 7 )  - Td.71, 
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FIGURE 2. Spectrum at M ,  = 2, Re = 2 x lo', at 100 collocation points. (a) a = 0.05, 

(b) 01 = 0.10, (c) a = 0.20, and (d) blowup of (6). 

where f = 2y - 1. Boundary conditions for the density and temperature perturbation 
waves are of more general nature, so these variables are represented as a standard 
Chebyshev series. In this section, only adiabatic results are shown. Thus, the y-  
derivative of the temperature perturbation is zero at the lower wall. The upper wall is 
insulated; therefore the temperature perturbation is set to zero. The density at the walls 
is obtained by integration of the continuity equation. 

The numerical algorithm is based on an expansion of the unknown variables in terms 
of known basis functions. Taking the perturbation density @) as an example, let 

and its first derivative 

(4.12) 

(4.13) 

be evaluated at each collocation point. Inserting p and the other variables into the 
linearized stability equations leads to a system of linear equations for the coefficients 
of the basis functions. From these one can either calculate a global spectrum using 
routines from the IMSL library or obtain a single eigenvalue at a sequence of 
parameter values using a continuation technique. Details are given in Herbert (1990). 

Figures 2 and 3 correspond to iM, = 2. The dependence of the eigenvalue of inviscid 
character (i.e. those eigenvalues close to Im{c> = 0, which in this case also tend to be 
relativelp isolated from their neighbours) is shown in figures 2 (a)--2 (c) which 
correspond to a = 0.05, 0.10 and 0.20 respectively, all at Re = 2 x lo", and obtained 
with 100 collocation points. It is clear from the sequence of figures that one inviscid 
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FIGURE 3. Phase velocity spectrum at M ,  = 2, SI = 0.1, Re = 7 x lo5. (a) 75 collocation points, 

(b) 100, (c) 125, (d) 150. 

eigenvalue is approximately stationary, while the remaining inviscid eigenvalues 
originate from very large values of Re { c }  at very low a. A magnification of figure 2 (b) 
(shown in figure 2 4  shows the region of the spectrum corresponding to 0 < Re{c) < 
1. One notes the general ‘ Y ’  shape of the spectrum as discussed by Morawetz (1952, 
1954). The spectrum is composed of three ‘ Y ’  shaped pieces. These are due to the 
structure of the viscous terms of the two momentum equations and the temperature 
equation. The coupling between the equations and the non-unit Prandtl number leads 
to the non-superposition of the ‘ Y ’  singular curves as Rr > 00. Before drawing any 
general conclusions however, we show spectra at Re = 7 x lo5 in figure 3 ,  leaving all 
other parameters unchanged with respect to figure 2. As expected, higher resolution is 
required to properly resolve the spectrum. The sequence of figures 3 (a>-(d) correspond 
to resolutions of 75, 100, 125 and 150 collocation points respectively. Although 
Morawetz (1952) predicts that there is a set of ‘viscous’ eigenvalues which lie on the 
edges of the ‘V ’  part of the ‘Y’, packed with a density proportional to (.Re):, it is clear 
that at M ,  = 2, the triple point of the ‘Y ’  is cut off by two horizontal bands of 
eigenvalues. The word horizontal is used here as a qualitative description. At the lower 
resolution of N = 75, the bands are slightly wider than for higher N .  It is not 
completely clear whether these bands will remain or disappear as N +- 00. A definitive 
answer would require further investigation into the properties of the viscous component 
of the spectrum at high Reynolds numbers and high Mach numbers. Comparing 
figures 3 (b) and 3 (d ) ,  it is clear that one effect of insufficient resolution is the splitting 
of the spectrum from the vertical part at the bottom of the ‘Y’ .  However, such a 
splitting is not always indicative of loss of resolution (see figure 4 at a = 0.1, M ,  = 5, 
Re = 2 x 10‘). 
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ReIc) 

FIGURE 4. Phase velocity spectrum at M ,  = 5 ,  CY = 0.1, Re = 2 x lo6. (a) 100 collocation points, 
(b) 125, (c) 150. 

We now turn our attention to a similar set of spectra at M ,  = 5 which seem to 
exhibit a more complex character than their M ,  = 2 counterparts. At Re = 2 x lo6, 
CL = 0.1, the three ‘Y ’  shaped curves are clearly present (figure 4). These structures 
subsist in an unmodified form (i.e. without the horizontal bands) at higher Reynolds 
numbers at the higher M,. One ‘ Y ’  is approximately symmetrical about the Re {c}  = 

0.5 axis. The vertical part of the ‘ Y ’  has split into three pieces, one along Re{c} = 0.5. 
and the other two curves placed symmetrically about Re{c) = 0.5. The actual locus of 
points along these curves shows a similarity with the continuous temporal boundary- 
layer spectra discussed in Ashpis & Erlebacher (1990). As the Reynolds number is 
increased to 5 x lo‘, the resolution requirements simultaneously increase (figure 5). 
Only when the vertical locus of eigenvalues along Re {c} = 0.5 appears, is the resolution 
adequate, at least for the part of the spectra above it, although this statement is not 
quite true near the horizontal bands. The unchanging vertical position of these bands 
as N increases from 125 to 150 indicates that their presence is not an artifact of a loss 
of resolution. 

To complete the picture, figure 6 shows the spectrum at M ,  = 5, CL = 3.5 and Re = 

2 x lo5. Now, several inviscid modes have moved into the 0 < Re{c) < 1 range. As 
each mode crosses Re{c) = 0 or Re{c} = 1 regions, a critical layer develops; this is 
examined in $6. Once again, as the Reynolds number increased, the width of the 
horizontal bands increases, and resolution studies indicate that they do not disappear 
as N -t a. 

From these spectra, it is clear that it is somewhat difficult to judge the convergence 
of particular eigenmodes. A general rule of thumb states that the least-stable 
eigenvalues converge the fastest with increasing resolution. However, this should not 
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FIGURE 5. Phase velocity spectrum at M ,  = 5, cz = 0.1, Re = 5 x lo6. (a) 100 collocation points, 

(b) 125, (c) 150. 

be taken for granted. Recent work by Reddy, Schmid & Henningson (1993) 
conclusively demonstrates that certain regions of the spectra are very sensitive to very 
small (random) perturbations of the linear matrix elements. Perturbations on the order 
of lop6 are sometimes sufficient to visually displace the eigenvalues. In most cases, the 
modes in the neighbourhood of the triple point of the ‘Y ’  are the most sensitive. Since 
the matrix elements must change with increasing resolution, it is clear that certain 
modes will never converge, however accurately the computation is accomplished. 

Some comments are in order concerning our choice of an adiabatic fluctuating 
temperature boundary condition at the wall. We have computed several spectra with 
the zero perturbation temperature at the wall (high-frequency limit). The only changes 
in the spectra occurred in one of the left branches of the ‘ Y  ’. This branch corresponds 
specifically to the conductive temperature modes. Changing the temperature boundary 
condition at the wall simply shifts that branch parallel to itself by approximately half 
a wavelength (spacing between two successive modes along the branch). This result can 
be obtained by considering a WKB approximation of the energy equation in the limit 
of high Reynolds number. Since the modes we are considering in this paper have an 
inviscid limit, and are therefore not on those branches, the change of boundary 
conditions does not affect the conclusions of this paper. 

In anticipation of the results presented in the following sections, we plot in figure 
7(a)  the evolution of the mode I1 phase velocity (finite Re (c} as a + 0) as a function of 
a. This is carried out for several resolutions and at two different Reynolds numbers. 
Although inviscid theory suggests stronger instabilities at M = 5, viscous calculations 
indicate that the resolution requirements become much more severe. We therefore 
restrict ourselves to M ,  = 2, and Re = 7 x lo5 and 1.4 x lo6. Figure 7(b)  shows that 

6 F L M  2 5 8  
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FIGURE 6 .  Phase velocity spectrum at M ,  = 5,  a = 3.5, Re = 2 x lo5. (a) 100 collocation points, 
(b) 125, (c) 150. 
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Im{c} exhibits a local maximum near a = 4. This mode becomes less stable at higher 
Re, while a shifts to a slightly lower value. As expected, a higher resolution is required 
at Re = 1.4 x lo6 ( N  = lSO), as opposed to N = 100 at Re = 7 x 10’. Unfortunately, 
we are not able to increase Re beyond 1 . 4 ~  lo6 and still obtain accurate results at 
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resolutions not exceeding N = 150. Further discussion of figure 7(b )  is deferred until 
the asymptotic theory at large Re has been presented. 

In the following sections, we examine solutions of the stability problem in the limit 
Re+ 00. Guided by a number of previous viscous theories, together with the work of 
Morawetz (1952, 1954), we expect, in general, the solution to develop in the form 

z2 = zZ,(y) + Re-; Zl,(y) + O(Re-l), 

U" = fioty) + Repifil(y) + O(Replj, 

f =  ~(y>+Re- t~(y)+O(Rr- ' ) ,  
p" = jo( y) + Re-; <( y )  + O(Re-l), 

c = co + Re-: c1 + O(Re-l). 

(4.14) 

5. Inviscid disturbance equations 
Taking equations (4.3k(4.7), and then retaining lowest-order terms in Re (see Mack 

1984, for example), we obtain the following two first-order equations for the leading- 
order normal velocity ( f i  = U",,) and pressure ( p  = Po) perturbations respectively: 

ia2 p",, = --(uo-co)u"o, 
YM: T, 

where the appropriate boundary conditions to be applied to this system are 

5,(0) = a,( 1) = 0, (5.3) 

implying Pnu(0) = PoJ1) = 0, (5.4) 
where c, is the complex wave speed of this system. Equations (5.1) and (5.2) may be 
combined to yield the single second-order equation (see for example Mack 1984, 1987) 

for 5". 
Before investigating any of the above systems numerically, it is interesting to study 

the significance of so-called 'generalized inflexion points' (GIP) which are found to be 
highly significant in the context of compressible flows. If we multiply (5.5) by 6: (the 
complex conjugate of fro) and then subtract from the resulting equation its complex 
conjugate, the following equation is obtained : 

where x = r, - M i (  u, - coy, (5.7) 
and a superscript asterisk here denotes a complex conjugate. After some algebra, this 
may be written 

6 - 2  
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Writing co = Re {c,) + i Im { co> (5.9) 

then the neutral state corresponds to Tm{co>+O. In this limit, (5.8) may be written 

dy 
(5.10) 

Using arguments similar to those of Lees & Lin (1946) and Duck (1990), then: (i) as 
Im{co} +0, the right-hand side of (5.10) is zero except possibly at yi (where U,(y2)  = 

Re {c,}); (ii) the left-hand side of (5.10) must be zero at both y = 0 and y = 1 ; while (iii) 
the right-hand side is clearly non-zero unless 

(5.1 1) 

Thus, in order to avoid an inconsistency, we must have (5.11). 
Most importantly, there does exist a difference between thc present (bounded) flow 

configuration, and that of unbounded flows, in that in the present situation, (5.1 1) is 
necessary if 

0 < Re{c,} < 1, (5.12) 

i.e. a critical layer must exist inside the flow, while in the case of unbounded flows 
condition (5.11) only holds if the wave speed is ‘subsonic’, i.e. 1 - 1/M, < Re{c,) < 
1+1/M,. This is because (5.11) is a direct consequence of the zero velocity 
perturbations at the domain boundaries. In this respect, there is absolutely no 
distinction made here between supersonic and subsonic modes ; thus in a bounded flow, 
any neutral inviscid mode satisfying (5.12) must be associated with a GIP. Indeed, this 
point is discernible from the results of Lees & Lin (1946) although it does not appear 
to have been explicitly pointed out before, at least in the context of internal flows. The 
above says nothing about neutral inviscid modes outside the range of (5.12). It is also 
worth noting that authors who implement Dirichlet boundary conditions (in place of 
radiation boundary conditions) on the disturbance terms in truncated infinite domains 
may well experience difficulties in computing non-inflexional supersonic modes, since 
the arguments above suggest that a GIP is necessary for supersonic disturbances, a 
condition which is clearly erroneous in the unbounded case. 

Utilizing (3.5) and (3.9) in (5.1 1) yields, 

(5.13) 

If the term inside the square brackets is zero, then by Sutherland’s law (2.9), we must 
have 

[ 3  r, + 5cl,=u1 = 0, (5.14) 
which is clearly inadmissible. Consequently, the only way that a GIP will occur is if the 
mean temperature profile has a local extremum. If we invoke Sutherland’s law and 
(3.9), then we either require 

4l&d = 0, (5.15) 
which is clearly not possible on account of (3.5), or 

(5.16) 
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Since T, > 1, and the flow is unidirectional, then this condition cannot be satisfied 
unless 

0 < U,(YJ < 1, (5.17) 

which implies (5.18) 

(implying that the lower wall must be cooled below adiabatic conditions). 

6. Inviscid disturbance results 
The eigenvalue problem posed in (5.1)-(5.4) was solved using a Runge-Kutta 

scheme, with Newton iteration being used to update the complex wave speed c,, so that 
all boundary conditions were satisfied. 

In a number of computations (specifically those for which 0 < Re{c,,} 6 l), it was 
found necessary to deform the integration contour into the complex y-plane (in 
particular below the real y-axis), in a manner described by Lees & Lin (1946). This was 
undertaken in two independent ways. The first, as suggested by Mack (1965b)) involves 
obtaining the mean flow profile (U,,(y), T,(y)) along the real y-axis, and then using 
Taylor series expansions to obtain the mean flow profile off the real y-axis; this detour 
is made close to where U,(y) = co. The second approach (which was generally used in 
preference) obtains the mean flow solution itself in the complex y-plane, thereby 
eliminating the errors associated with truncation of the Taylor series. Specifically, the 
mean flow was obtained for 0 < y < J, (i.e. on the real y-axis), y1 < y < y ,  --ij),, y ,  - 
iy, < y < y ,  - iy,, y ,  - iy, < y < y, and thereafter back along the real axis y ,  < y 6 1. 
y,,y,,y3 were all taken to be real and positive and were chosen to avoid the 
computation proceeding too close to the critical layer. Comparison of results using the 
two approaches proved a useful check of the accuracy of our results. A further check 
on our results was that in addition to solving (5.1), (5.2) we also solved the adjoint 
system (see (7.20), (7.21) below), and also (5.5). 

The first results we present are for the case M a  = 2 and adiabatic lower-wall 
boundary conditions. Results for Re{c,) are shown in figure 8. The results display a 
number of interesting features. There appear to be many modes, which, however, can 
be divided into two distinct families, the first corresponding to Re{c,} > 1 as a+ 0. All 
these modes, with the exception of one (mode I) have Re {c,j + co as a +. 0; we refer to 
these as the upper family. These modes all suffer a monotonic decrease in Re {q,) as a 
increases, and the results suggest that some finite value is approached in the limit a -t 
a. The second family is defined by Re(c,) < 0 as a+0. and the Re(c,} all increase 
monotonically with an increase in a, and eventually become positive. We refer to these 
modes as the lower family of solutions. Again, all except the first of these modes (mode 
11) appear to be unbounded as a+O. 

A further, important feature is that in all cases for which Re{c,,) > 1 or Re{c,j < 0, 
all these modes are neutrally stable to within machine accuracy, i.e. Im{c,} = 0. 
However, since there can be no GIP point for the mean flow under consideration, then 
there can be no neutral modes with 0 < c,, < 1. Indeed, it is found that in the case of 
the upper family of solutions, once Re(c,} < 1 these modes become stable according 
to our inviscid calculations, while in the case of the lower family of solutions, once 
Re{c,,) > 0 these modes become unstable according to our inviscid calculations; the 
location at which Re{c,) either drops below 1 or rises above 0 is marked on figure 8 
by a circle. The distribution of Im (c,} for mode I is shown in figure 9 (a) (other upper- 
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FIGURE 8. Re{c,) as a function of a for M,, = 2, adiabatic lower wall 

family modes also have negative values of Im(c,), but many orders of magnitude 
smaller). The distribution of Im{c,} for mode I1 is shown in figure 9(b) (other modes 
of the lower family have considerably smaller values of Im{c,>, although these are also 
positive). Note that Tam & Hu (19893) studied mixing layers in a confined region, and 
showed the existence of four families of modes, two of them neutral, and two of them 
unstable. The unstable families depended on the existence of a small region of subsonic 
flow confined between two regions of relatively supersonic flow. 

Next we go on to consider the aforementioned trends as cc+O suggested by our 
numerical results. The existence and behaviour of modes I and I1 as a --f 0 is easy to 
confirm. If we set A: = 0 in (5 .5) ,  and integrate once, we obtain 

where K is an arbitrary constant. This equation may be integrated once more to yield 
(U" - C") i;,, - U,, i;, = K [ T ,  - M i (  U" - co)2], (6.1) 

If this is to satisfy the boundary condition on y = 1 (the boundary condition on y = 

0 is already satisfied by (6.2)), the integrand of (6.2) must possess at least one zero, 
which implies the presence of at least one solid line. Thus, c, must satisfy 
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FIGURE 9. Im{c,f as a function of a for M ,  = 2, adiabatic lower wall: (a) mode I ;  (b) mode 11. 

a result which is similar to that found in certain classes of incompressible flow (e.g. 
Miles 1961). Solving (6.3) c, (for given U,(y), T,(y), and M,) confirmed the numerical 
results as a+O. Indeed, if we take a model problem, i.e. 

u"(Y)= Y ?  TKY) = 1 (6.4) 

C, = !j(l4-[1+4/M:]i). (6.5) 

then the solutions of (6.3) are 

These modes will be discussed further in 97. 
The behaviour of modes 111 and higher as a+O is different, but nonetheless, 

straightforward to confirm. In these cases we have co + co as a + 0, and a balancing of 
terms in ( 5 . 5 )  in this limit demands 

co = a-lcoo + O( l), 
f i 0  = coo + O(a). 
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The equation for Coo is then 
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If, to make further progress analytically, wc assume 

(6.8) 

/cool % 1, implying that we are 
focusing attention on the higher nodes (alternatively we could assume the model 
problem, with T, = l), then the WKB solution is 

where A is a constant. Here the boundary condition on y = 0 has been applied, while 
the other boundary condition on y = 1 demands 

(6.10) 

where n is any (large) positive or negative integer. This expression clearly illustrates the 
multiplicity of modes. 

We can now explain intuitively why the upper family of modes (I, 111, V, . . .) is stable, 
while the other family of modes (11, IV, . . . j have regions of instability by contrasting 
with what is known in the boundary layer. The analysis hinges on the size of the relative 
Mach number at the two walls. Starting from the definition of relative Mach number 

it is easy to show that the top boundary is relatively supersonic IM,I > 1 when c > 
1 + l/M,, or c < 1 - l/Mm. On the other hand, the bottom boundary (assumed 
adiabatic with a wall temperature given by (3.7)), is relatively supersonic when the 
phase velocity approximately satisfies c < - G / M m  or c > &ME. Immediately, we 
see that as M ,  increases, the range of c, over which the top boundary is subsonic 
decreases, while the range of co over which the bottom boundary is subsonic tends to 
a finite limit. Considering first the even-numbered family of modes when Re{c,} > 0, 
we find that the bottom wall is relatively subsonic, while the top wall is relatively 
supersonic. Thus, the situation can be compared to that found in an unconfined flow 
over a flat plate when there is an imbedded supersonic flow between the wall and the 
relative sonic line. Both for the unconfined flows, and the Couette flow, the second 
mode is unstable. Consider now the odd-numbered family of modes for Re {c,} < 1 as 
M ,  increases. Both the top and bottom boundaries are relatively supersonic, separated 
by a region of subsonic flow. This situation is reminiscent of that described in Tam & 
Hu (1989b). They found two families of unstable modes when a vortex sheet was 
separated by two regions of uniform flow, both relatively supersonic. When the 
thickness of the vortex sheet became finite and was increased, the magnitude of the 
growth rate decreased, but remained positive. However, there was always a region of 
uniform flow on either side of the shear layer which could sustain sinusoidal waves. If 
the width of the shear layer in Tam & Hu (1989b) were to extend across the whole 
domain, the instabilities would probably disappear, which would be consistent with 
our results. 

The second set of results we show is for the higher Mach number case M ,  = 5, with 
the adiabatic boundary conditions on the lower wall retained. Figure 10(a) shows a 
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FIGURE 10. Reic,} as a function of CL for Men = 5, adiabatic lower wall: (a) mode 11; 
(b) modes I,, I,, I,. 

number of results for Re {c,}. Although these seem much the same as the corresponding 
distributions for M ,  = 2 there are some differences, in particular with mode I,, as 
defined in figure lO(a), which initially corresponds to mode I in figure 9(a) .  However, 
unlike the corresponding results for M ,  = 2, it turns out that there exist other (stable) 
modes in the vicinity of mode I,. Some of these modes are shown in figure 10(b) (on 
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FIGURE 12. Im{c,} as a function of a, increasing M,, adiabatic lower wall, mode 11. 

a magnified scale) and are denoted by I, and I,. These modes were difficult to generale 
numerically in regions of oc where Re {c,} was very close to unity and where the decay 
rates were quite small; however, the existence of these modes was confirmed using the 
three different formulations of the inviscid stability problem described above, together 
with the condition (6.3). Indeed, it is quite likely that other such modes exist, although 
the present investigation failed to yield any. However, it turns out that these modes are 
all stable, as shown in figure 11 (a). Note that modes 1, and I, have, in places, values 
of cn exceedingly close to each other, but nonetheless distinct; this compounded the 
difficulty associated with these modes. 

Modes I1 and higher, on the other hand, did exhibit the same qualitative behaviour 
as the corresponding M ,  = 2 results. In particular, mode I1 becomes unstable at oc % 

1.85, with the distribution of Im{c,} shown in figure 11 (b). Other higher modes of this 
lower family are also unstable, but with substantially smaller growth rates. 

We next consider the effect of increasing the Mach number M ,  on the important 
(unstable) mode TI, for the adiabatic lower-wall case. This is shown in figure 12. Tt is 
very clear that as M ,  increases, Im {c,} approaches a finite limit. This is interesting in 
so far as in many other examples, such as boundary layers and shear layers, an increase 
in Mach number results in a decrease in the growth rate. However, there is a very 
simple explanation for this trend in our case. As M ,  + 00, we expect that (generally) 
T p M ;  T,(y), 8 = O(l), whilst all other quantities remain bounded in this limit. 
Thus, (5.5) reduces to 

(6.11) 

and numerical solutions of this system by T. James (1993, private communication) 
confirm the trends observed in our numerical results. 
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The existence of the ‘kinks’ that are observed in the distributions shown in figure 12 
are a surprise indeed. Careful numerical checks were performed, including grid 
resolution, and changes in the indentation of integration contours in complex space. 
All the results indicate that these ‘kinks’ are real, although they are probably not 
physically significant. 

The final set of results in this section relates to the case M ,  = 5, as previously, but 
with the (cooled-wall) boundary condition q(0)  = 1. It is worth noting that, even in 
this case, the uniform temperature together with a linear velocity profile is still not a 
proper solution of the governing equations, except in the very special limit as y+ 1. 
Nonetheless, the proper solution does have some important properties, namely that 

(6.12) 

together with U d Y )  = 1 - UO(1 -Y). (6.13) 

As a consequence of these symmetries, the mean flow has a single GIP at y = + (with 
U&) = i). These properties turn out to have interesting implications for the inviscid 
stability of the profile. 

Figure 13 shows the variations of Re {c,] for the first eight modes. As in the previous 
cases, there again exist two distinct families, with all except two of the modes having 
the property IRe{c,}l+ cc as a+O. Furthermore, all modes are neutrally stable if 
Re{c,) < 0 or Rejc,} > 1. Significantly, owing to the aforementioned asymmetries 
about y = $, the behaviour of Re {c,} for the upper family of modes is merely the mirror 
image of the corresponding lower family member about Re { CJ = i. These symmetries 
also yield the result that Im{c,} is precisely the same for corresponding modes at the 
same wavenumber. Figure 14(a) shows the distribution of Im{c,} for modes I and 11. 
These modes are initially neutrally stable, then as Re{c,} drops below unity/rises 
above zero both modes become stable. As a increases still further, both modes have 
Re{c,}-ti which is reached at a x 0.5. Im(c,) then becomes positive, implying unstable 
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FIGURE 14. Im{c,} as a function of a for M ,  = 5,  T(0) = 1 :  (a)  modes I and 11; 
(b) modes 111 and IV. 

modes. This is entirely consistent with our GIP arguments, which predict neutral 
modes having co = f. Thereafter, Re(co} for mode I increases, and decreases for mode 
11. 

Figure 14(b) shows the distribution of lm(c,} for modes I11 and IV (which have 
identical values of ImCc,)), which over the range shown are seen to be stable. It is 
possible that regions of instability exist for higher a, although the computations 
become increasingly difficult as a + a. 

In the following section, we go on to consider regions where viscous effects are likely 
to become important, particularly in determining the stability properties of the flow. 
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7. The viscous correction 
The results described in the previous sections show that there is a family of solutions 

of (5.1)-(5.4) comprising neutrally stable modes over a wide range of a, which have 
either c, > 1, or c, < 0, and hence have no critical layer. The question then arises as to 
the effecl of viscosity on these modes -whether it plays a stabilizing or destabilizing 
role in this problem. We investigate this question next. 

The viscous correction to the problem arises due to the thin layers that occur as a 
result of the violation of the no-slip condition (and also the temperature condition) on 
the walls y = 0 and y = 1. These conditions are 

f i = v " = O  on y = O  and y = l ,  (7.1) 
- 
T = 0 on y = 1, while on y = 0, 

a f  
c?l' 

F = O  

- = Q  

if the wall is insulated, and 

if it is heated or cooled. 
Now from (4.4) and (4.6) we see that on y = 0 we have 

and 

while on y = I we have 

and 

(7.3) 

(7.5) 

(7.7) 

Thus generally these expressions fail to satisfy the appropriate wall conditions 
described above. 

In order to remedy this, we require a (Stokes-like) layer of thickness U(Re-$) on both 
walls. Considering first the layer on y = 0, defining 

Y = y Re; = 0(1), (7.8) 

(7.9) 
together with ii = i?( Y )  + O(Re-i), 6 = Red v( Y )  + O(Rec'), 

F = F(Y> + O(Red), = F ( Y )  + O(Re-i), 

then taking O(1) terms in (4.3)-(4.7), we find 

(7.10) 

where pL = po(0), P = jTL = p",(O). 
The corresponding layer on the upper wall is quite similar. Defining the lengthscale 

F =  (y-l)Rei, 
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together with (7.9), then the results for = O(1) may be simply inferred from those for 
Y = O(1) by: (i) replacing Y by - f ;  (ii) replacing PL by P U  = y"(1); (iii) replacing c, 
by c, - 1 ; and (iv) replacing pL and q(0)  by unity. 

as Y+ 00 and f+- m, respectively. Using the 
above, we find 

We require the behaviour of 

(7.11) 

+v",,Y+C,,, as Y+m,  (7.12) 

(7.13) 

+Cou Yfd,, as Y+-co, (7.14) 

where b = 0 in the case of an insulated wall, while b = 1 for a cooled/heated wall. 
We now seek the leading-order viscous correction term to (5.  I ) ,  (5.2) for y = 0(1), 

using the expansions (4.14). The variables fil and p", turn out to be determined by an 
inhomogeneous form of (5.1) and (5.2), namely 

where 

= c, R,, I r, - M;( u, - co)2 
iP1 [ V,, - uo,v", 

u,-c, u,-c, 

iyM2 a%, 
r, 

R, = 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

The boundary conditions on this system are also inhomogeneous, namely 
6,(0) = C I L ,  6,(1) = fi lV (7.19) 

(the boundary conditions for p",, may be obtained from (7.16), although this is not 
necessary for the following), where f i I L  and fi lu are defined by (7.12) and (7.14) 
respectively. 
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FIGURE 15. Im(c,} as a function of a for adiabatic lower wall, modes I and 11: (u) M ,  = 2 ;  
(b) Mcm = 5. 

To obtain c,, we use the condition of solvability of the system (7.15>(7.19). For this 
we require the adjoint to the system; if we denote u+ and p +  as the adjoint functions, 
then these are to be determined by 

U,, u+ + ia2( U, - c,) yM: 

uo - CO T, 
u;+-- p+ = 0, 

iv+ [ - 
- c,)~ ] = 0 .  P;-- 

Uo - co 

The boundary conditions to be applied to this system are that 

p+(0) = p+(l) = 0. 

c, is then given by ?I+( 1) CIL, - u+(O) BIL 
c1= 17 i 

(7.20) 

(7.21) 

(7.22) 

(7.23) 

where z: and p+ are the complex conjugates of ?I+ and p+ respectively. 

easy to show that we must have 
Given the nature of the solution for u+, p+, CIL,, CIL, R ,  and R, when c, is real, it is 

c, = Im{c,}(kl+i), (7.24) 

where the positive sign is taken for c, > 0, the negative sign is taken for c, < 0; note 
that Im(c,} > 0 for instability. However, in all the computations we performed, 
without exception, we found Im(c,} < 0. Results for Im{c,} for the adiabatic case with 
M ,  = 2 (modes I and TI) are shown in figure 15(a). The distribution becomes 
unbounded as CL +0, and also as a+a,, the point at which cop+ 1 or 0;  these 
distributions are typical of all modes. Figure 15 (b) shows the corresponding 
distributions for the adiabatic case with M ,  = 5, and exhibit, qualitatively, the same 
behaviour. (The corresponding computation for M ,  = 5 ,  q (0)  = 1 was also carried 
out, and yielded qualitatively the same picture.) We shall defer discussion of the limit 
a+ao until the following section, but let us now consider the limit as a+O of modes 
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I and 11, from which it appears that our expansions cease to be uniformly valid. This 
is most clearly seen by the apparently singular behaviour of the viscous correction to 
the complex wave speed as a -> 0, together with the U ( d )  growth of the wall-layer 
thickness in this limit (see (7.10) for example). Thus when a = O(Recl) the wall layers 
will fill the entire channel, and the disturbances become purely viscous in nature. 

Specifically, if we write 
a = Re-lE, (7.25) 

then the governing equations (4.3)-(4.6) reduce to 

-icp" + ip,, zi +p,, 5+ iU,,p" + Gpny = 0, (7.26) 

(7.27) iq7 

P ,  = 0, (7.28) 

ap,[ - icu"+iU, ii+ CU,,] +- = pO""yy+pOT "Oi,,+pOT ?i,,'y? Y% 

where it has been implicitly assumed that viscosity is a function of temperature only. 
The problem then reduces to a basically viscous system. 

However, for modes 111 and higher, c, = O(a-'j as a + 0, and since the Stokes-layer 
thickness remains U ( R  :j, it does not fill the entire channel. Additionally, as a + 0 ,  
Im{c,) = O(a-l), and so the expansions (4.14) remain valid. 

Returning to figure 7(h),  we note the generally excellent agreement between the 
values of Re$Im{c) obtained numerically, and Im{c,)- obtained from the above 
asymptotic theory, for the case M ,  = 2 (mode 11) The values of c, obtained using the 
two approaches are almost indistinguishable. We do note a deviation between the 
results as co + 0, caused by the (expected) breakdown in the asymptotic theory in this 
limit (and as cO+ 1) .  This aspect is investigated in the following section. 

8. The nature of the solution as c, + 0 (or c, --z 1) 
We consider here the nature of the complex wave speed as c,+0 (the results for 

c, +. 1 may be simply inferred from those of c, +- 0). Our previous results indicate that 
as c,+O, (with cc+a,> then: (ij c,, the viscous correction to the wave speed becomes 
unbounded ; (iij the leading-order wave speed c,, becomes non-neutral as a increases 
above a,,; and (iii) the thickness of the wall layer increases. Thus the region is likely to 
be a regime of some interest, on which we now focus our attention. 

More specifically, if we write 
a = ""+€a,, (8.1) 

where L = Red (8.21 
then we expect c = cE, + O($j. ( 8 . 3 )  

5 = d,,(y)+cfi,(yj+ ..., (8.41 
P=6o(Y)+&(Yj+... .  (8.5) 

The solution in the 'core', i.e. away from the wall layers is then expected to develop 
in the form 
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The leading-order system is then 
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and 

or symbolically 
together with 

'%!{&I,d& = 0,  

d"(0) = C"(1) = 0. 
(8.9) 

(8.10) 

Notice that (8.6) and (8.8) imply that 6, = O(y3) as y+O; this system effectively 
determines the value(s) of a, for which c, = 0. Turning to the next-order system, wc 
find 

(8.11) 

(8.12) 

The boundary conditions to be applied to this system are 

01(1) = 0, O,(O) = AdI(O), (8.13) 

where A is to be determined later. Using conditions of solvability, we must have that 

(8.14) 

wherep^+(y), ?(y)  are the adjoint functions to (8.6), (8.8), namely those determined by 
(7.20), (7.21) with a = q,, co = 0. 

We now consider the effect of the wall layers. The upper wall layer remains of 
thickness O(Re-+) and as such plays no role to this order. The interesting changes are 
related to the lower wall layer, where now we must have 

Y = €-1y = O( 1) (8.15) 

as the crucial scale, wherein to leading order 

(27, i j ,P")  = (i?,,€&,€ijO). (8.16) 

Taking the leading-order terms in thc continuity and momentum equations we find 

(8.17) 
,fjop = 0, (8.18) 

(8.19) 

- -  
i U,, + V,p = 0, 

ia,[U;(O) F- el] fin + a,, u~(o) & = gnFF - id,, 4, 
with boundary conditions 

Q(0) = E(0) = 0, 
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(8.20) 

where the latter condition arises from a proper matching with the y = O(1) solution. 
If we now differentiate (8.19) with respect to F, invoke (8.17) and (8.18) we find 

- - 
U,ppp - iau[ Ul(0) Y- 41 Uop = 0. (8.21) 

The solution of this equation (utilizing the boundary condition on Y = 0, and also 
evaluating (8.19) on F =  0), leads to 

- ia, jo s,’ Ai {[id, U;(O)$ (F- c,)} d F 
u, = ~ (8.22) ’ 

[ia, Ug(O)]k Ai‘ { - [ia, U;(O)]i F,) 

This solution enable us to determine A(C,) introduced previously, 

a: lom 1: Ai ([ia, U;(O)]i ( f- F,)} d Fd  

[iaUi(O)]i Ai’ { - [ia, U;(O)]i c,} A =  (8.23) 

The procedure is then to determine a solution to (8.11), (8.12) consistent with (8.13), 
(8.14), and (8.23). However, the problem for P, is highly nonlinear, and as such is a 
difficult numerical task. However, if we suppose lal/ + MI, then 

1 

-a1 [ R,$’dy 

1; [k,  0+ + k,$+] dy 
c, = d n  + O(a-3, (8.24) 

which, on account of the nature of$+, B+, Rl,  R2, can be shown to be purely real 
to leading order; indeed, it is interesting to note that although this system does admit 
complex values of for a1 = 0(1), it appears that the above fails to capture the non- 
neutral nature of the inviscid modes for a > a,. 

However, the reason for this is clearly illustrated by considering the nature of the 
inviscid system (5.1)-(5.2) in the limit as a+a,. Suppose that we set 

a = a,+8, (8.25) 

where 181 + b o l ,  (8.26) 

then we expect expansions of the form 

go = 6, + d5, + 820, + O(8”), 

p”, = $” + &pl + + O ( 2 ) ,  

c, = &c^, + 8, + + O(83). 

The leading-order system is 

~ { f i ~ , $ o l  = 0, q{fiU’$O) = 0, 
(see (8.7), (8.9)), with 

B,(O) = 6,( 1) = 0. 

(8.27) 

(8.28) 

(8.29) 
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At the next order, G1 and jjl are again determined by means of (8.12), although we 
shall defer discussion of the boundary conditions to be applied to this system, and turn 
instead to consideration of the O(&') terms. We find 

= R,, (8.30) 

2ia c^ iai 
T, G 

g{fi2,p2} = -- i u 8 - 2 u  2ia 8 +- O l C 0  -- [ - 2, 6, - t, 8()] 
0 1  

T, 0 0  
T, 

= R,. (8.31) 

However, the expansions above are not uniformly valid as y +- 0, since U,(y) = O(y) 
in this limit, and hence a breakdown to our approximations must occur, specifically 
when y = O(&). If we set 

y = &F, P =  0(1), (8.32) 

then 6, develops in the following manner (that may be demonstrated to be correct 
a posterioi) : 

(8.33) 8, = &Go( Y) + 01' In Y) + d2@,( 9) + . . . . 
It is simple to show that 

KO - 
- 

@,(Y)=--Y, C l  (8.34) 

where KO is some constant; this is consistent with (8.33). We need not consider Qj, (Y)  
for our purposes, whilst the solution for Q2( Y) may be written 

dY 
/"Y [Ui(O) Y- tl] + -. 

Q2 = A, Ui(0) [Ul(O) 9-El] 

= A,[ Ui(0) F- c ,̂] In + ..., 
where we have only retained terms which are of immediate concern and 

(8.35) 

(8.36) 

(8.37) 

The crucial significance of (8.36) is the presence of the +in jump in the value of the 
logarithm (Mack 1984, for example), as the point F = t JUi (0 )  is traversed; it is this 
that generates an imaginary component to Q2, given as Y+ oc by 

@; - A,x[u;(o) F-co], (8.38) 
(here and below a superscript ' i' denotes an imaginary component). 

Returning to our discussion of the core region, we see we must have that 

Z:,(O) = 8,(1) = 0, (8.39) 
and consequently ĉ , is determined by (8.14), with A = 0. On account of the nature of 
Rl, R,, RJ, C+, p+ we expect to be a real quantity. 
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We are now in a position to specify the following boundary conditions: 

6,( 1 )  = 0,  t;”,O) = -A ,  n, (8.40 j 

and thus < may be determined, in principle, by means of the conditions 

J: [Ri i? + R”,+] dy = 6(0) A, tl n, (8.41) 

where superscript ‘r’ denotes a real part. 
Unfortunately, we see from (8.37) that A, is dependent upon Ti(0) and Ui(O), and 

since both these quantities are zero in the case of an adiabatic lower wall, then in this 
case we must consider (8.27) up to 0(di3) in order to determine a value for the imaginary 
component of the wave speed as & + O ;  however, since the general technique is well 
established above, we do not carry this out in this paper. 

The key result, therefore, is then that Im{c,j is O(di2) in general (but 0 ( E 3 )  in the 
insulated wall case), and as a consequcnce we do not expect to obtain non-neutral 
values of ĉ , from (8.14) as a, + ix, (this would only be expected in a study of the O(s‘) 
terms of the c-expansion, in general, and the 0(e3>  terms in the case of an insulated 
lower wall). Indeed, the two expansions in this section, namely (8 .1)  and (8.25) are 
equivalent in many ways, notably as \all -t co. The above also clearly illustrates how c, 
is only complex for values of a > a,,, since for LX < a, the ‘jump’ in the value of the 
logarithm is not present. 

9. A change of boundary conditions 
It is interesting that the (confined) flow profile under consideration in this paper has 

such different stability characteristics from those of the (external) boundary layer. This 
leads us to question the nature of these fundamental differences. 

One obvious candidate for investigation is the effect of the boundedness of the 
domain (i.e. the impermeability condition imposed on two walls). In an attempt to 
assess this effect, we considered the problem where the impermeability constraint on 
the upper wall ( y  = 1) is replaced by one of radiation, while retaining the same basic 
profile. Specifically, we replace (5.3) by 

Z’,(O) = 0 (9.1) 

26, 
c?y 

(as before), but with -+vZ’,,=O on y =  I, 

where v = & a[l - M i (  1 - c0)2]! (9.3) 

Here the sign of v is chosen to ensure that Re(v) > 0. Indeed, this amounts to 
considering the piecewise-continuous flow which consists of our basic Couette flow for 
0 < y < 1 and uniform flow (U,(y) = &(y)  = 1)  over 1 < y < co. This may be shown 
using the arguments used by Drazin & Reid (198 1) who considered incompressible 
piecewise-linear velocity profiles and imposed continuity of pressure at y = 1. 

The system defined by (5.1)-(5.2)’ (9.lt(9.2) is solved numerically by the techniques 
used in obtaining the results of $6 (i.e. a Runge-Kutta shooting scheme in conjunction 
with a Newton iteration scheme to iterate on c,,). 

Results for one example were obtained, namely for M ,  = 2, with adiabatic 
conditions on the temperature at y = 0. Results for Re(c,,} are shown in figure 16(a). 
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FIGURE 16. (u) Re{c,] and (6) Im{c,} as a function of CL for M ,  = 2, radiation boundary 
condition on y = 1 .  

Two modes were found, the first (mode I) originates at a = 0, with a wave speed co = 
1 - 1/M, = 0.5, and as such is typical of so-called ‘first modes’ observed in supersonic 
boundary-layer stability studies (e.g. Mack 1987). Mode 11, on the other hand, 
originates with a wave speed c, = 1.50, and consequently is more typical of the 
bounded-flow modes observed in previous sections of this paper. Figure 16(b) shows 
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the variation of Im{c,) with a. Mode I is unstable over the entire range of a shown, 
while mode I1 is neutrally stable up to a z 3.5, at which point Re{c,} drops below 
unity, and Imjc,} becomes negative, indicating a stable mode. We were unable to find 
other modes over the range of a considered, particularly modes with Rejc,} < 0, 
although it is very likely that such modes exist, particularly at larger values of a. Thus 
it appears that the imposition of radiation-type boundary conditions results in a hybrid 
situation, with stability characteristics similar to those found in both bounded and 
unbounded flows. 

10. Conclusions 
In this paper we have considered the linear stability of compressible plane Couette 

flow. Our numerical results for the full governing equations are clearly in agreement 
with the predictions of Morawetz (1 952, 1954) regarding the structure of the spectrum. 
The main thrust of this paper has been directed towards modes which have been 
predominantly inviscid in nature. It appears that these are the most important, since 
they may become unstable, while our studies indicate that viscosity plays a generally 
stabilizing role, throughout. Although we have computed the spectrum of eigenmodes 
from the linearized Navier-Stokes equations for extremely high Reynolds numbers, we 
have not found evidence of unstable modes (at least to M ,  = 5). This is not 
inconsistent with the inviscid results, although we would expect to find unstable modes 
when viscous effects are taken into account if they are sufficiently small. 

The expansions of the assumed form (4.14) are typical of solutions which are 
predominantly inviscid, but have viscous corrections (see also Morawetz 1952). In $8 
we studied the important regimes where c,+O (or c, t 1) in which the first two terms 
in the series become comparable, a critical layer forms close to one of the walls, and 
the viscous layer thickens to @Re-4). These are the ‘exceptional’ cases referred to by 
Morawetz (1 952). 

In 99, it was show how, to a large extent, it is the boundary conditions imposed on 
disturbances, that determine the nature of the stability of the flow. Indeed, earlier in 
the paper, in $4 it was shown in the study of the GTP condition that it is important to 
impose correct (i.e. radiation type) boundary conditions in the case of unbounded 
flows to avoid the (erroneous) requirement that a GIP is necessary for the existence of 
supersonic neutral modes. 
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wish to thank the referees for a number of insightful comments. 
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